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1. INTRODUCTION

The main objective of this research is to develop the tracking algorithms for a

multi-sensor tracking mount control system. The tracking mount rusponds to

independent drive signals about the azimuth and elevation axes. The tracking

error is detected by means of four independent sensors; namely, RF telemetry

system, millimeter wave radar, infrared sensor, and TV video system. The quality

of the signal from each of the sensor systems is available in terms of measures

of the signal to noise ratio. It is assumed that these in turn can be expressed

as the variance of the statistical measurement noise distribution.

A major requirement of the tracking mount control system is the development of

tracking filters to reduce the noise content of the multi-sensor output

information. Fixed gain tracking filter algorithms, such as the a-$ and OL-B-y

tracking filters have been used in this application in the past in conjunction

with single sensor measurements. This study focuses on two aspects. First the

use of Kalman filters is considered for the tracking application. Secondly, the

techniques for the fusion of multi-sensory information are presented. A

functional block diagram representation of the multi-sensory tracking mount

control system is shown in Figure 1.

The general formulation of the Kalman filter is presented first. The precise

form of the algorithm would depend on the model that is selected for the time

evolution of the quantity being measured. Two such cases are considered in

detail. In the first, the target acceleration is modeled as white noise and a

two-state Kalman filter is developed. Next, the possibility of a correlated



SPACE DATA CORPORATIONTM32
TEMSPE, ARIZONdA

target acceleration is allowed far by modeling the target acceleration as a

Gauss-Markov process. This results in an algorithm involving a three-state

Kalman filter. In each case, the possibility of adapting the filter in the

presence of target maneuvers is discussed. This is followed by a presentation of

two approaches for fusion of the multi-sensor information. Recommended processing

hardware and estimated processing times are presented.

A computer simulation program for the evaluation of the tracking filter

performance is described next. Results of a single run using the two-state and

the three-state Kalman filters are presented.

2
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2. GENERAL FORMULATION OF THE DISCRETE KALMAN FILTER

The general formulation of the discrete Kalman filter is briefly presented in

this section.

Let the random process to be estimated be described by the linear discrete state

equation

j(k+l) = (k) x(k) + u(k) + w(k) (1)

The measurement of the process is assumed to occur in accordance with the linear

relationship

z(k)= H(k)x(k) + v(k) (2)

Here, the various quantities are defined as:

x(k) = nxl process state vector at time tk

O(k) = nxn process state transition matrix

u(k) = nxl deterministic input vector at time tk

w(k) = nxl input noise vector assumed to be a white sequence

with known covariance

z(k) = mxl measurement vector at time tk

H(k) = mxn measurement matrix describing the ideal

(noiseless) connection between the measurement and

state vectors at time tk

v(k) = mxl measurement noise vector assumed to be a white

sequence with known covariance

3
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The covariance matrices for w(k) and v(k) are given by,

E(N )J T )I 
= j(k) , i k

E[(k)vT(i)] = W ik

(3)

The input and measurement noise vectors are assumed to be uncorrelated,

E[(k)vT(i)] f 0 , for all k and i. (4)

Let us assume that at some point in time tk, an initial estimate x-(k) is

available based on all of our knowledge about the process prior to the arrival of

the measurement z(k).

This is known as the a priori estimate. The "hat" denotes the estimate and the

super minus indicates it's a priori nature. The estimation error then becomes

e-(k) = x(k) - x(k) (5)

We further assume that the associated error covariance matrix

T T
P-(k) = Ee-(k)e -(k)] = E[(x(k)-x-(k))(x(k)-x-(k)) 1

(6)

is also known.

With the arrival of the measurement z(k) at time tk, let the estimate be updated

according to the relation

X(k) =x-(k) + K(k)(z(k)-H(k)x-(k)) (7)

where x(k) represents the updated (or a posteriori) estimate and K(k) denotes a

nxm gain matrix.

4
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The updated estimation error and its covariance matrix are;

e(k) = x(k) - x(k) (8)

T T
P(k) = E[e(k)e (k)] = E[(x(k)-x(k))(x(k)-x(k)) ]

(9)

Subsitution of Eqn. (2) into (7), and the resulting expression for x(k) into

Eqn. (9) leads to:

T T
P(k) =(I-K(k)H(k))P-(k)(I-K(k)H(k)) + K(k)R(k)K (k)

(10)

The individual elements along the major diagonal of P(k) represent the estimation

error variance of the elements of the state vector which are being estimated.

The Kalman filter selects the gain matrix K(k) such that each element on the

major diagonal of P(k) is minimized. The optimum gain K(k), known as the Kalman

gain, is given by:

T T -l
K(k) = P-(k)H (k)(H(k)P-(k)H (k) + R(k)) (Ii)

The covariance matrix P(k), using the Kalman gain, can be shown to be given by

P(k) =(I-K(k)H(k))P-(k) (12)

For the next time point tk+l, the a priori estimate is obtained from Eqn. (1)

as,

x--(k+l) = *(k)x(k) + u(k) (13)

in view of the fact that w(k) is a white sequence (with zero mean and time-wise

uncorrelated).

The a priori error and associated covariance at time tk+l are then obtained as,

e-(k+l) = x(k+l) - x_(k+l) = *(k)e(k) + w(k) (14)
T T

P-(k+l) = E[e-(k+l)e- (k+l)] = *(k)P(k) k) + Q(k)

(15)

The Kalman filter algorithm may be summarized as follows:

5
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1. Obtain a priori estimate x-(k) and its error covariance P-(k)

2. Compute Kalman gain

T T
K(k) = P-k)H (k)(H(k)P-(k)H (k) + R(k)) (16)

3. Update estimate with measurement z(k)

x(k) :x-(k) + K(k)(z(k)-H(k)-(k)) (17)

4. Compute error covariance for updated estimate

P(k) =(I-K(k)H(k))P-(k) (18)

5. Project ahead

x-(k+l) = *(k)x(k) + u(k) (19)

T
P-(k+l) = t(k)P(k) (k) + Q(k) (20)

6. Set k = k+l and go to step 2.

A schematic diagram of the Kalman filter loop is shown in Figure 2.

6
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3. TWO-STATE KALMAN FILTER

3.1 Filter Algorithm. The explicit form of the Kalman filter for the tracking

mount azimuth or elevation estimation using a two-state system model is obtained

in this section. To this end, define the state variables:

xl = O t - 8 m , tracking error

0
x2 = Ot , target velocity

The continuous state equations then are

0
xl = x2 - Wm(t)

0
x2 = n(t) (21)

0

where wm(t) denotes the tracking mount rate. The target acceleration x2

is modeled as a zero mean white process n(t) with auto correlation function

2
a 6(T).

a

The discrete model corresponding to the continuous state equations may be derived

as

xl(k+l) = xl(k) + Tx2(k) + Am(k) + wl(k)
(22)

x2 (k+l) = x2(k) + w2(k)

where &Om(k) = Om(k+l) - 8m(k) represents the change in the mount encoder reading

during the sample period T, and is treated as a deterministic input in this

application. The covariance of the random sequence w(k) is obtained as,

Rfl ql1T] 2 r3 /3 T 2/ 2
Q(k)= = a 2/(23)

L! 22 aLT 2 /2 TJ

The measurement z is given by

z(k) = xl(k) + v(k) (24)

2
with R(k)= a , the variance of the sensor error.

v

7
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The matrices characterizing the model are thus:

*(k) =[ [ , H(k) = [1 01 (25)

Letting

P-(k) = , P(k) 1 (26)

L..12 P2 LP.12 P22

and subsituting the 0(k), H(k) expressions into the general Kalman filter

equations of chapter 2, the algorithm for the two state model is found to be,

1. Obtain a priori estimates xl-(k), x2 (k) and associated covariance

elements P 1 , PT12 , P22

2. Compute Kalman gains

KI

2
P11 + yv

P'12
K2 = (27)

2
PT2 + Cv

3. Update estimate with measurement z(k)

xl(k) = xl-(k) + Kl(z(k) - xl-(k))

x2 (k) = x2-(k) + K2 (z(k) - xl-(k)) (28)

4. Compute error covariance for updated estimate

Pll = (I-Kl)PTIl

P12 (l-KI)PI'2

P22 -K2PT 2 + P22 (29)

5. Project ahead

xl-(k+l) = xl(k) + Tx2(k) + Aem(k)

8
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x2-(k+l) = x2(k) (30)

p = Pll + 2Tp12 + T2P22 + qll

P12 = P12 + Tp22 + q12

P22 = P22 + q22 (31)

6. Set k k+l and go to step 2.

3.2 Filter Initialization. The filter may be initialized using the best

estimates of the system state available from prior knowledge of the process and

the uncertainty associated with it. Thus one might select

along with [-O - 2

P-(O) =
-20 x2

Here, the numbers 0 x10, ax20 would be small when xio, x20 are known with

a high degree of accuracy. On the other hand, the variances would tend to

infinity when one has very little confidence in the choice of the initial values

xl0, X20.

Alternatively, the first two measurements of the process, z(O) and

z(1), may be used to initialize the filter. In this approach, the filter would

start at time t=T with the initial estimates

xl-(1) = z(1) (33)

x2-() = z(1) - z(O)
T (34)

The error covariance associated with this initialization may be derived using the

measurement equations

z(0) = xl(0) + v(0) (35)

9
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z(1) = xl(l) + v(1) (36)

and the state equations (22) which yield

xl(l) = xl(0) + Tx2(0) + A~m(O) + wl(O) (37)

x2(1) = x2(0) + w2(0) (38)

From (36) and (33),

X10) - xj-(1) = -v(1)
" 2

and hence, E[(xl(1) - x,-(1)) 2] = E[v(1)2] = (39)

Substitute for x2(0) from (37) into (38) to get

xl(1)-Xl(0) Aem(0) + Wi(0)

x2(1) = ___________ - AO___+_______+ w2(0) (40)
T T

Subtracting (34) from (40),

(xl(l) - z(1)) - (xi(o) - z(O)) AOm(o) + wj(0)

x2(l) - x2(1) =
T T

+ w2(0) (41)

Using Eqns. (35) and (36), one obtains,
I

x2(1) - x2-(1) = --(v(1) - v(0) + Aem(0) + wl(0)) + w2(0)

T
and hence, (42)

2

2ov  1 2
E[(x 2 (1)-x2 (1))2] - + - qi + q22 - q12

T2  T2  T

2
2av  1 2

+ = a T (43)

Also, we find,

E[(xl(1)-xl-(1))(x2(1)-x2-(1)]

v( 1)

= E[ (v(1) - v(0) + Aem(0) + wl(0) - Tw2 (0) )]
T

10
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2
| av

(44)
-T

Hence, the filter initialization at the time t=T becomes,

x--(l) = (45)
z(1) - z(O)

T /
2 2

ov av

T
P-(1) =

2 2 2
av  2av  Oa T

T T2  3 (46)

Note that aa = 0 should be used if xi is known to be initially non-accelerating.

11
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4. THREE-STATE KALMAN FILTER

4.1 Filter Algorithm. The two-state Kalman filter assumes the target

acceleration to be a white noise process. In other words, the acceleration

represents a timewise uncorrelated random function. In reality, however, the

target acceleration would generally behave closer to a correlated process. A

three-state target model following the Singer approach is developed in this

seciton. The target acceleraton is modeled as a Gauss-Markov random process and

the explicit equations forming the Kalman filter are derived.

Let us define the system state variables as:

xl = O t - em , tracking error

0
x2 = et  , target velocity

00
x3 = t , target acceleration

The continuous state model may be written as,

0
x= x2 - Wm(t)
0
x2 = x30 2
x3 =-0x 3 +Lcn (t) (47)

where wm(t) denotes the tracking mount rate. The last equation indicates that

the target acceleration x3(t) evolves as a Gauss-Markov process with correlation

2 -aiTI
time 1/a. The process x3(t) has the autocorrelation function oa e and n(t)

represents unity white noise process.

The corresponding discrete time state equations are obtained as

i(k+l) = (k)x(k) + u(k) + w(k) (48)

12
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0 0 033 (49)

with

013 =- (-l + xT+e )
a2

-CiT

023 = L(l-e )

-QT

*33 = e (50)

The vector u(k) is simply the deterministic input

A&Om(k)

u(k) - 0

0 /(51)
and is available from the encoder outputs

Aem(k) = Om(k+l) - em(k) (52)

The random input vector w(k) denotes a zero mean white sequnce with the

covariance F
qll q12 q13

Q(k) = q12 q22 q23

q13 q23 q33 (53)

where 2 3 3
aa 2aT 2o T 2 2 OT

qll - [l-e- + 2aT + - - 2a T -4oTe-

CL 4 3

2
Oa 2CT oT aT 2 2

q12 = -i [e + l-2e + 2aTe - 2cT + c T

2
q a 2aT cT

q13 = -2 (l-e - 2aTe ]

13
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2
a aT 2aT

q22 =- [ 4e- - 3 e + 2aTJ

2
Oa 2aT OtT

q23 = - [e-- + 1 - 2e-

Ci

2 20T
q33 = 0a [a-e ] (54)

The measurement is given by

z(k) = xl(k) + v(k) (55)
2

with R(k) = ov , the variance of the sensor error. The H(k) matrix simply equals

(1 0 0) since only measurements of xl(k) are available. Let the a priori and a

posteriori estimation error covariances be denoted as

FT1 PT2 PT3 Pll P12 P13

P-(k) 012 P22 P231 P(k)= P12 P22 P23

P13 P23 P33 P13 P23 P33
(56)

The various quantities describing the discrete three-state model may now be

substituted in the general Kalman filter equations of chapter 2. The explicit

filter algorithm for the three-state Kalman filter then becomes:

1. Obtain initial state estimates xl-(k), x2-(k), x3-(k) and the associated

estimation error covariance elements P 1 , P-T2 , P13 , f22 , P23 , P33.

2. Compute Kalman gains

pKi

2
pTi + av

14
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P12

K2
2

Pi + cy

P13

K3 =

2
P1I + cv (57)

3. Update estimate with measurement z(k)

xl(k) = xl-(k) + Kl(z(k) - xl-(k))

x2 (k) = x2-(k) + K2 (z(k) - xl-(k))

x3(k) = x3-(k) + K3(z(k) - xl-(k)) (58)

4. Compute error covariance for updated estimate

P1l = (1-K1 )pj1

P12 = (1-K1)pT2

P13 = (1-Kl)pT3

P22 = -K2PT 2 + P22

P23 = -K2PT3 + P23

P33 = -K3PT3 + P33 (59)

15
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5. Project ahead

xl-(k+l) = xl(k) + Tx2 (k) + *13x3 (k) + AOm(k)

x2-(k+l) = x2(k) + *2 3x3(k)

x3-(k+l) = *3 3x3(k) (60)
2

phI 
= Pli + 2TPl2 + 

2 13P13 + T
2p22 + 2T2 13P33 + qll

P12 = P12 + 23P13 + Tp22 + (13 + T0 23)P23 
+ *1323P33 + q12

P13 = *33(P13 + Tp23 + *l3P33) + q13
2

P22 = P22 + 2 0 23P23 + *23P33 + q22

P23 = *33(P23 + *23P33) + q23
2

P33 = *33P33 + q33 (61)

6. Set k = k + 1 and go to step 2.

4.2 Filter Initialization. The three-state Kalman filter may be initialized

using the best available initial position, velocity and acceleration states, and

the associated error covariance. One might use the initialization

X(0) xQ2)

along with
2

°X10 0 0

P-(0) = °x 20  0
2

0 0 a s (62)

The zero initialization for the acceleration is appropriate because it is modeled

as a Gauss-Karkov process which is a zero mean process in the ensemble sense.

16
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Alternatively, the first two measurement, z(O) and z(l), may be utilized to

initiate the filter at time t=T. Using the measurement equations

z(0) =xiCO) + v(o)

z(l) = xi1l) + v(1 (_____63)

and the state equations (48) to yield

xi(l) = ziCO) + Tx2(O) + CP33(O) +wl(O)

x2(l) = 2(0) + *23x3(O) +w2(0)

x3(l) = *33x3CO) + w3(0) (64)

the initial error covariance may be derived following the approach detailed in

the two-state filter case. The initial state estimate is thus

z( 1)

x(1) z(1)- z(O)

T

0 (65)

and the elements of the symmetric 10) matrix are given by

piF-(1) =ov

P127 1) = 0
T

P13-0) =0

2 2
_ 

2av C0a 2 2 2 3 3 otT t
P22 (1) =T- + f- [2-(x T + - a T - 2e7 - 2ctTe-

0a2  OLT
P23-0) = -~ (e +cTI

P33(0) = aa2  (66)

17
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Note that, ca = should be used if the system is known to be non-

accelerating initially.

18
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5. FILTER ADAPTION AND MANEUVER DETECTION

The Kalman filter development presented in the previous chapters assumes a

knowledge of the target dynamic characteristics as well as the measurement

uncertainty. However, in practice, the information concerning the target

2
acceleration variance Oa may be limited. This is particularly true in case of

targets that are known to exhibit maneuvering dynamics.

The target dynamics uncertainty enters the filter algorithm through the matrix

Q(k). Lacking a precise value of Q(k), it may be viewed as a parameter

influencing the filter design. Increasing the elements of Q(k) results in larger

values of the a priori estimation error covariance P-(k) as per Eqn (20). When

the elements of Q(k) (and hence those of P-(k)) are large compared to those of

R(k), the Kalman gains K(k) assume larger values as indicated by Eqn (16). The

filter thus puts a relatively greater weight on the new measurement than on the a

priori estimate. Relatively more measurement noise is then present in the

filtered estimate x(k). The algorithm therefore represents a wideband filter.

Conversely, when the elements of Q(k) are relatively small compared to those of

R(k), The Kalman gains K(k) become small. The algorithm then puts more weight on

the a priori estimate x-(k) compared to the new measurement in forming the

filtered estimate x(k). In other words, it relies more on the past history and

the state projection via the state transition matrix *(k). Therefore, less noise

is present in the filtered estimate and the algorithm represents a narrowband

filter.
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In view of the above a narrowband filter design would appear more desirable.

However, if the true uncertainty in the target dynamics exceeds the Q(k) value

used in the filter design, the narrowband characteristic (small Q(k) to R(k)

ratio and hence small K(k)) would cause too much of the signal contained in the

observations z(k) to be rejected. The filtered estimate may then fail to follow

the true motion and may even diverge from it. Consequently, a judicious

selection of the filter bandwidth is clearly indicated.

The effect of a mismatch in modeling has a similar effect. When the state

transition matrix $(k) assumed in the filter design deviates from the true model

of the system, the projected estimate x-(k) would be in greater error than

indicated by its covariance matrix P-k). Again, the possibility of divergence

due to this reason may be reduced by incorporating an increased Q(k) leading to a

wideband filter.

The ability to control the filter bandwidth by varying the Q(k) to R(k) ratio may

be used to track maneuvering targets. Suppose a good narrowband filter has been

designed for a known type of target motion. If the target makes a sudden

maneuver, the narrowband filter may be too slow to react to it because of

the less weightage on the new observation and the track may be lost. One way of

correcting the situation would be to increase the filter bandwidth as soon as the

maneuver occurs by increasing Q(k). When the maneuver stops, Q(k) may be reduced

to realize a narrowband filter again and achieve better filtering. This would

represent an adaptive technique for tracking maneuvering targets. However, a

maneuver detection method is required.

A maeuver may be detected by monitoring the innovations process
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V(k) = z(k) - H(k)x-(k) (67)

The innovations process represents a zero mean process with the covariance

S(k) = H(k)P-(k)HT(k) + R(k) (68)

Assuming a Gaussian distribution for the components of V(k), the probability that

each component vi lies in the interval + c P7,i) where c is a positive constant

is well known. A simple maneuver detection scheme may thus be formed by checking

each vi(k) against this interval. Whenever any of the Vi(k) falls outside the

range a maneuver may be declared.

An alternative approach is to consider the normalized random variable p(k)

defined as

p(k) = vT (k)S-l(k)v(k) (69)

It can be shown that p(k) has a chi-squared distribution with m degrees of

freedom where m is the dimension of the V(k) vector. Hence,

E[p(k)] = m (70)

The criterion P(k) > cm, where c > I is a constant, may then be used to detect a

maneuver. Or, a fading memory average computed from

g(k)= yg(k-1) + p(k), 0 < y < 1 (71)

may be used. Note that
m

Lim E[g(k)] =-y

k-->c* (72)

Thus, whenever g(k) exceeds c m , a maneuver may be declared.
(l-y)

Once a maneuver is detected using either of the above techniques, the Q(k) matrix

may be increased suitably. This would widen the filter bandwidth enabling it to

track the maneuvering target.
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6. MULTI-SENSOR TRACKING ANALYSIS

6.1 General. The earlier sections addressed the development of Kalman filter

algorithms assuming a single sensor providing noisy measurement of the position

misalignment between the target and the tracking mount. When a single target is

to be tracked using a set of multiple sensors providing noisy measurements of the

tracking error, the sensor outputs may be processed using either a parallel or a

centralized architecture.

6.2 Parallel Architecture. The parallel processing architecture is schematically

shown in Figure 3. Each sensor output zi is processed by a Kalman filter which

provides the optimal state estimate xi and the associated estimation error

covariance matrix Pi, i = 1,4. The individual Kalman filter estimates are then

optimally combined to form the single state estimate x and its error covariance

matrix P.

The track fusion relationships may be developed readily using the minimum

expected Mean Square Error (MSE) criterion. To simplify the approach, let us

consider the scalar problem of optimally combining the four Kalman filter

estimates of the tracking error. Further, we introduce the simplified notion:

y = true value of xl

(i)

yi = Xl i = 1,4

2 (i)

i= P1l

(c)

Yc = x , the combined estimate of xI (73)
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Let the combined estimate be expressed as,

Yc : clyl + c2Y2 + c3Y3 + C4Y4 (74)

The estimation error then becomes,

ec = Y-Yc

= y - ClYl - c2Y2 - C3Y3 - c4Y4

= cl(y-yl) +c2(Y-Y2) + c3(Y-Y3) + c4(Y-Y4)

+ (1 - cl - c2 - c3 - c4)y

= clei + c2e2 + c3e3 + c4e4

+ ( -c - c2 - c3 - c4)y (75)

For an unbiased estimate, one requires

E[ec] = 0 (76)

Hence,
ci + c2 + c3 + c4 - I = 0 (77)

which leads to

ec = cleI + c2e2 + c3e3 + c4e4 (78)

2 2 2 2 2 2 2 2 2
E[ec Cl l + c2 02 + c3 03 + c4 04 (79)

2
Minimization of EIec ] subject to the constraint (77) results in

1 1

ci 
-

2 E 1 (80)

The optimal combined tracking error estimate becomes

Yc Y 2 -(81)

£ 2 (z 2

2

i
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or/
1 (j)

(c) 1
=l - (__i) )

p 1) Pil (82)

Subsituting Eqn (74) into Eqn (73), the variance of the combined tracking

position estimation error becomes

2 1
yc  - (83)

ai2

6.3 Centralized Architecture. In the centralized architecture, the measurements

from all the sensors are first combined optimally to produce a single equivalent

measure of the track misalignment. A single Kalman filter then processes the

combined measurement data to produce an optimal estimate of the system state.

Figure 4 shows a schematic diagram illusrating the centralized architecture.

To obtain the optimal sensor data fusion relation, express the desired combined

measurement z(c) as a linear combination of the individual sensor measurements of

xl

zC) czCl ( ) + c2z (2) + c3z ( 3 ) + c4z (4) (84)

The equivalent measurement equation used by the Kalman filter may be written as

z(c) = xl + v(c) (85)
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The error in the equivalent measurement is given by

v(c) = z(c) - x1

= cl(z (1 ) - xl) + c2(z(2) - xl) + c3(z (3 ) - xl)

+ c4(z (4 ) - xl) + (cl + c2 + c3 +c4 -i)xl

= Cv() + c2v(2) + c3v
( 3 ) + c4v (4 )

+ (cl + c2 + c3 + c4 - 1)xl

(86)

As done earlier in the parallel architecture case, the requirement of an unbiased

estimate and the minimization of the error variance leads to

1 1

2  _ (87)
Ovi 2

EJ.JOvi

which gives the optimum data fusion relations

z(C) 1 z( i )

E (Tvi (88)

2 1

r 2 (89)
I Orvi

The equivalent measurement and its error variance thus obtained are processed by

the single Kalman filter to produce the optimal state estimate.

6.4 Processing Hardware Design

6.4.1 General. The microcontroller accepts multiple sensors input information

and processes the data based on the above control algorithms. The results of the
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processing are output in the form of control conmmand signals capable of driving a

tracking and pointing system.

The microcontroller is composed of several subsystems. The subsystem functions

provide for user interface, shared RAM, sensor/signal input and processing, and

output control. Figure 5 shows a block diagram of a typical microcontroller and

the various subsystems and functions.

The user interface consists of a keyboard/terminal for user interaction. The

user interface provides the means by which the operator can interact with the

microcontroller using a high level programming language to vary the control

parameters of the pointing system. The level of interaction will allow the user

to develop and implement the necessary algorithms.

The Central processing Unit (CPU) is a general purpose subsystem used in the

controller to implement the Kalman filter and optimal combining algorithms. A

block diagram of the CPU, Motorola Part Number MVME133-1, is presented in Figure

6. The main features of the CPU system are microprocessors, cache memory, memory

management, timing, interrupt handling, and serial 1/0. The CPU subsystem

combines the processing power of the Motorola 32-bit MC68020 Microprocessor with

the speed-enhancement properties of a 16Kb Cache Memory Accelerator. The Cache

Accelerator, a small, fast memory system, compensates for the typical speed

mismatch between a very fast CPU and its relatively slow associated dynamic RAM

main memory system. It does so by concurrently storing the data most recently

stored in main-memory locations. These data can subsequently be obtained by fast
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accesses of "cached" locations rather than by much slower accesses of main

memory.

To accommodate for the fact that the cache memory normally has much less capacity

than the main memory system, little-used accesses stored in the cache memory are

routinely replaced with more active ones, based on the bus traffic between the

Microprocessor Module and the bus and memory interfaces. This assures maximum

utilization of the cache. The microprocessor operates at a fixed frequency of 16

MHz. To further improve the processing speed and capabilities of the CPU system,

the microprocessor is supported by a Motorola MC68881 floating point coprocessor.

Commercial grade CPU systems are available which operate with clock frequencies

up to 24 MHz. The MC68020 can interface and control as many as four 68881

coprocessors.

The memory management function implements demand-paged virtual memory operations.

It provides the required logical to physical address translation by performing

searching of translation tables in main memory.

The onboard programmable timer provides three independent cascadable 16-bit

counters with interrupt capability.

The interrupt handler allows interrupts to the onboard CPU from up to 20 sources.

The interrupt handler preprocesses interrupt sources into three groups of seven

interrupts corresponding to the seven possible MC68020 interrupt levels. The

groups are labeled Group 1, Group 2, and Group 3. The interrupt service priority

is determined by the interrupt level and the group number. Interrupts with

27



SPACE DAARPORATIONTM32

different interrupt levels are processed according to the standard interrupt

processing discipline. Interrupts within an interrupt level are processed

according to the group number.

Group 1 is reserved for system bus interrupts. The interrupt handler processes

Group 2 and 3 interrupts differently from Group 1 interrupts. If the interrupt

being acknowledged is a Group 2 or 3 interrupt, the interrupt handler fetches the

appropriate exception vector number from PROM and sends it to the CPU via the

local bus. If the interrupt being acknowledged is a Group 1 interrupt, the

exception vector number is fetched from the system bus where it was placed by

the interrupting device.

The serial 1/0 ports are accessible via a 50-pin flat ribbon cable connector at

the top of the board. Signal levels at this connector correspond to TTL

specifications, but can be transformed to RS-232-C levels by means of a separate

distribution board and cable assembly. The ports have full- and half-duplex

compatibility with programmnable baud rates. They are suitable for synchronous or

asynchronous operation, with 5 to 8 bits per character, plus parity.

The sensor/signal input and processing consists of parallel digital input ports,

analog-to-digital converters, and television frame signal processers. It is

expected that the existing hardware will be useable in the new controller. These

inputs are made available for processing in the new CPU assembly.
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The output control subsystem provides the interface between the processed data of

the signal input/processing subsystem or the user command data from the user

interface subsystem to drive the control command signals for pointing control.

6.4.2 Processing Time Requirements. The estimated processing time to compute the

state-variable filter and combining algorithms are presented. Worst case

analysis is presented which ignores the speed increases available through

the inherent pipelining capabilities of the suggested CPU with cache RAM and math

coprocessors. Also, a 16 MHz clock is assumed.

Table 6-1 presents the amount of double precision floating point calculations

required for filtering and combining one set of data. The two-state Kalman

filter computation requirements are based on the algorithm presented in Section

3.1. Section 4.1 describes the three-state Kalman filter. The optimal combining

algorithms are presented in Sections 6.2 and 6.3.

TABLE 6-1. FLOATING POINT COMPUTATION REQUIREMENTS

ALGORITHM JADD I SUBTRACT I MULTIPLY I DIVIDE ii PROCESSING TIME
2-STATE FILTER I 13 I 5 I 10 I 2 II 274.0 MSEC
3-STATE FILTER I 34 I 7 I 37 I 3 II 744.5 USEC
PARALLEL COMBININGI 6 I 0 I 5 i 5 I 158.5 ISEC
CENTRAL COMBINING I 6 I 0 I 5 1 5 I 158.5 pSEC

The estimated time for pezforming each math computation listed in Table 6-1 is

given below. This assumes double-precision, floating 2oint calculations using a

68020 CPU, 68881 math coprocessor, a 16 MHz clock, and a 32-bit wide data bus.

FADD 136 CLOCK CYCLES 8.5 pSEC

FSUB 136 CLOCK CYCLES 8.5 USEC

FMUL 156 CLOCK CYCLES 9.75 USEC

FDIV 188 CLOCK CYCLES 11.75 USEC
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Methods available to easily improve the required processing time includes using

faster system clocks which would provide up to a 33% increase and using multiple

math coprocessors. Although the 68020 can physically interface with eight math

coprocessors, the factory states that four coprocessors per CPU is a practical

limit. The four coprocessors would improve the processing time by about 50%.
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7. COMPUTER SIMULATION

7.1 Simulation Program Description. A computer program has been developed to

evaluate the filtering techniques presented in the study. The program simulates

the target motion, measurement noise and the filtering process. Either the

two-state or the three-state Kalman filter algorithm may be simulated.

The target motion is assumed to be governed by the state equations:

0
x1 = x2

0
x2 = x3 + a(t)

o
x3 = -Bx3 +V 2 Ba a n(t) (90)

where xl = target position, x2 = target velocity. The target acceleration is

composed of a deterministic part a(t) and a random component x3. The random

component is modeled as a Causs-Markov process with the autocorrelation function

2 -81TI
ate . The function n(t) represents unity amplitude white noise process.

The discrete equivalent of these continuous target state equations used by the

program is

,(k+1) = *(k)W(k) + u(k) + w(k) (91)

Here u(k) denotes the deterministic input vector

u(k) = a(k)

(92)
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The state transition matrix *(k) and the zero-mean white sequence w(k) are

described by equations of section 4.1 with a replaced by B, and aa replaced by

aat.

The random numbers forming the sequence w(k) are generated using a random number

subroutine. The subroutine generates random numbers x uniformly distributed

between 0 and 1. Zero mean random numbers y uniformly distributed in the range

-A to +A are then obtained through the transformation y = A(2x - 1). The numbers

y have the variance a2-. In the present program, the w(k) inputs are zero-mean
3

sequences with specified covariance Q(i,j). The program thus uses Ai = to

simulate the appropriate random numbers representing the elements of the w(k)

vector.

The measurement is modeled by adding a random noise sequence v(k) to the true

target position xl(k) obtained as the solution of the target state equations.

The measurement noise is assumed to be a uniformly distributed zero-mean sequence

2
with variance ov . This is achieved by letting A =V/3 v in the random number

generator computation. The program permits the input of piecewise constant

2
values of the measurement variance av .

Either the two-state or the three-state Kalman filter algorithm may be simulated.

The filter may be initialized either using a priori state estimates and their

associated error covariances, or using the first two measurements to generate

these initial quantities.
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The simulation also provides the option of evaluating the adaptive filtering

approach using the innovations process. This enables the filter to achieve a

wider bandwidth whenever a maneuver is detected.

All quantities of interest concerning the target motion, measurement and

filtering errors, error covariance, Kalman gains etc. can be printed out. The

mean and mean square values of the measurement errors simulated during a run are

printed out to provide a check on the random number generation. The mean and

mean square values of the filtered position and velocity errors during a run are

printed out to provide a measure of the effectiveness of the filter.

The program is presently limited to the input of a pulse-type acceleration

profile for the deterministic component a(t) of the target acceleration. The
2

measurement error variance av also is restricted to five constant values during

one run. These restrictions, however, are minor in nature and may be removed

quite readily. The program currently performs a single run. On the other hand,

Monte Carlo methods should be used to fully establish the performance of the

filter design under consideration. It would therefore be desirable to enhance

the capability of the program to perform multiple runs and output the ensemble

statistics.

7.2 Simulation Results. The results of a few typical computer simulation runs

are presented in this section. A coimment concerning the units of the various

quantities of interest would be appropriate. Any time unit, such as second,

minute, may be associated with the time scale values. Similarly, any position
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unit such as degrees, radians, feet etc. may be associated with the position

scale. The units of the various quantities of interest then become:

measurement (position unit]

position [position unit]

velocity [position unit/(time unit)]

acceleration [position unit/(time unit) 2 ]

Kalman gain K1 [dimensionless]

Kalman gain K2 [1/(time unit)]

Kalman gain K3 [1/(time unit)2]

The selection of the filter parameters requires some knowledge of the process,

i.e., the target dynamics. Suppose it is known that the target may have any

acceleration with an equal probability in the range of -60 to +60. This yields

2
the acceleration variance oa = 1200. Let the best estimate of the acceleration

correlation time be about 100 time units, i.e., a = 0.01. These parameters are

used to define the two- and three-state Kalman filters for the simulation.

The filters may be initialized using either of the two approaches discussed

earlier. Here we assume an initial position value of 3.0 with an associated

variance of 25.0 representing the accuracy of the sensor system. Assuming an a

priori knowledge that the initial velocity may be any value in the range -60 to

+60 with uniform probability yields a variance of 1200. Using the mean values as

the best initial estimates, the three-state filter is thus initialized as

=CDo
.0
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25 0 0

P-(0) L0 1200 0

0 0 1200

The initialization used for the two-state filter is

x(0) = K03.0j.0

P-(0) =
0 120

Unknown to the Kalman filter, we consider a target motion consisting of a

constant acceleration of 40. Superposed on this is a random acceleration

uniformly distributed between -8.66 to 8.66 which corresponds to a variance of

25. The random acceleration is assumed correlated with B = 1.0.

The measurements are assumed to be of varying accuracy over the time period of

interest. Uniformly distributed measurement errors with variances of

2
av = 25 (0 < t < 2)

1 1 (2 < t < 4)

- 49 (4 < t < 6)

= 4 (6 < t < 8)

= 16 (8 < t < 10)

were arbitrarily selected for the simulation. Note that this corresponds to the

measurement errors being uniformly distributed in the range -/3 av to v  .

The sampling rate was assumed to be 100 samples per unit time, i.e., T = 0.01

time units.
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Figure 7 shows a plot of the true target position xl as a function of time. The

measurement error at each sampling point is shown in Figure 8. Joining the

successive points, the plot in Figure 9 shows a better perspective of the

measurement errors as the data arrive sequertially. The errors generated by the

program confirm to the specified variation of the measurement accuracy.

The output of the two-state filter is presented first. Figure 10 shows the

variation of the filtered position error as a function of time. A comparison

with the measurement error time history clearly shows the effectiveness of the

Kalman filter in reducing the effect of measurement noise. over the time period

of 10 units, the rms position error is found to be 1.4210 in contrast to the rms

measurement error of 4.3589. The filtered velocity output is shown in Figure 11

and the rms velocity error over 10 time units is 11.4643. Figure 12 shows the

variation of the Kalman position gain K1. It is apparent that the gain

automatically adjusts in accordance with the quality of the measurements. For

2
example, at t=2, the measurement quality changes from a variance of av = 25

to 1. The filter assumes a much bigger gain Kl and thus puts a substantially

higher weight on the new data in comparison to the prediction from the state

model. This follows a transient period during which the model predictions

successively improve and the weightage on the new observations reduces.

Finally, a steady state is arrived when Kl assumes a constant value. The

variation of the velocity gain K2 showing similar behavior is presented in Figure

13.

A measure of the quality of the filter design may be obtained from the diagonal

elements of the estimation error covariance matrix P(t). Plots of the rms
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position and velocity estimation error, /iT and /22 respectively, are shown in

Figures 14 and 15. These represent the theoretical values of the filtering error

statistics and are meaningful in an ensemble sense. Furthermore, these

correspond to the ideal situation when the system state model used in the filter

and the truth model are identical. Again, the effect of the measurement quality

variations on these statistics is apparent.

The results obtained with the three-state filter are presented next. Figure 16

shows the position filtering error. It shows an rms value of 0.8320 over the 10

time units of simulation. The velocity error, with an rms value of 7.6585 over

the simulation period, is shown in Figure 17. The three-state filter estimates

the acceleration with the error presented in Figure 18. The Kalman gains Kl, K2

and K3 are shown in Figure 19, 20, and 21, respectively. The theoretical

position, velocity and acceleration error statistics associated with this filter

design are presented in Figures 22, 23, and 24, respectively.

From the above, it would appear that the three-state filter performs better than

the two-state filter. However, due to the statistical nature of the problem, a

single simulation suggests nothing of value regarding a comparison between the

two situations. In fact, the performance of each filter is highly dependent on

the nature of the target motion and the tuning of the filter via the selection of
2
Ga, the correlation characteristic a and the sampling interval T. As a general

feature, however, reducing the sampling interval would improve the filtering

performance in both cases.

37



SPACE DATA CORPORATION TM-3628

TEWME, ARIZONA

8. REFERENCES

1. A. Farina and F.A. Studer, "Radar Data Processing: Volume I -

Introduction and Tracking", John Wiley & Sons Inc., New York, 1985.

2. A. Farina and F.A. Studer, "Radar Data Processing: Volume II -

Advanced Topics and Applications", John Wiley & Sons Inc., New York,

1986.

3. Samual S. Blackman, "Multiple Target Tracking with Radar Applications",

Artech House, Inc., Dedham, MA, 1986.

4. Robert G. Brown, "Introduction to Random Signal Analysis and Kalman

Filtering", John Wiley & Sons Inc., New York, 1983.

5. R. Singer, "Estimating Optimal Tracking Filter Performance for Manned

Maneuvering Targets", IEEE Transactions on Aerospace and Electronic

Systems, Vol.AES-6, pp. 473-483, July 1970.

6. B. Friedland, "Optimum Steady State Position and Velocity Estimation

Using Noisy Sampled Position Data", IEEE Transactions on Aerospace and

Electronic Systems, Vol. AES-9, No. 6, pp. 906-911, November 1973.

38



TM- 3628

ZE

00

Ew W
0,

0
z -

l-0

< 0

I- -V g uj
0 ( 0 0)c

0 0 00

w~~ WULJ

U-. U'- Cl ) CC

0 0 0 L
zL CL z

I-- Fw

I-D

39



TM- 3628

w
w

<i<

2u 2

ow

0
0

N w

z 00<

:az cLJ Z

-cx 0. FEw ~-i w L <wPw
2 > < L-

+w +

ICC

<xl 0.

40



TM- 3628

00

C/.)

a

0

c

9)

Zcj P .

~Jj
. (a

CO)

ci
cm CD

N~ N m

0 0 0.0

C,,w w w
CO U) U) c

41



TM-3628

<Xi tOl

-
U

"0

N

c
0CCC

0<0 CL

z a:

jIcI

E
C/)

LL

00

0 0 0 0

z z cnv z1I
w wL iL

U)C)C/) C/)

42



TM- 3628

0

0

.2
8-

00
43 u



TM- 36 28

50-PIN RIBBON CABLE
CONNECTOR - POWER-UP MODE.
TTL TO EXTERNAL SYSTEM CONTROLLER.

S-3CTRNIIN SURAEET. ROM ESETM ABORMEOT

DATAS ANDSCA

E. G NTE AC

SERAPRT E IS T IERR TRITRRP ADE

FigureN PO.N COROESO Block iagra

44F



TM- 3628

CD)

-00-

0

c~Q 0

CN

C:)

o000 CD 0
0) d) 0) T) 0D T)

rl C-4C,4

NOIIISOd i3OdVi 3nii
45



7 -~ -v--p.---

TM- 36 28

_________________________________ 0
* .. . .

* . . I

1..

* .* . . .. . . .

0~~
* .

* I .

* . . I.

* . . .-. * C)E
* . * - LAJ

* ... I.
* .

C12
* **

1
**I** * . ** **

* * %. * CC

* . ... **:* 1-
I,~ a

* J.
* 4

* **~****
.t . 0

*. : ' S.

;.. *~: J-J* *: :. * (-Q

* * *
* * * .. C)C)

* * * . * ** **

* . * * **: * * L.iJ CC
CU* * **

4 * * * _ C)

* * .* ** * * I- -~

* .* ** * C)
* . * *. *

* . . * ** * * * * * .* CU
* * * ** *

~.

***.*
cn

:4 ~
.. * I *. M)

I-.
* *:*~,4* -Is.

* *.

***, *'

* *: ~ Q . 4 CN

* . *

* *P

* * *

1*.. * * I

' I I
0 0 0 0 0
CNJ CN

dOddi INM'J3dflSVTh
46



TM- 3628

CD)

000

IM:-

(.0 4E

LLJ W

ifD C) 0 C

d~dd3A3A3nsv-
47)



TM- 3628

.e*L

'4 a)

0

VE

. .-
4

CD CD:. CO

.4.0.

d~d 3NO~iS~d G 3iU

48-



liii -~

TM -3628

0

I *

* ,. a

* **. .1
* *.t..

-. *.. *.~ w

* .. a. -

* .. *..* ***4',..*g CX)
* * 4-'

* I.. ** *

...............

* .-

* A *** ***~ **

* ~****,* ** **~* ** * *'-:~

I... *

* ... *.*~*.,*

***I ** * *

'A, *

a ** ****~** I-.

* .%%.'., * **~* * C

* .,..* U~~i
* *i.t' LC) ~ r

* .-. *

* I-

* ..m*~.*..
* * U

0
* ** * * %* .*

~
A - *

* 0* **~ ,* * *
* *~... *

4-,

8*.
*'~~*

..............

*- S..
* *** . b CN

* *.**
I. *

*.* ~**

* .*.

* .1'
* **. * **
* ~* *:.. *

S. * *.

* ** . . *. * 0

0 0 0 0 0 0 0) 0 0 0) C
cc r-~ io Lfl ~t ~q CN ~- i- CN

I I

dOd~i L.LIOOflA Gi~IThi
49



TIM- 36 28

"-4

a

LC)

C

.,4

oc

Q 0 0 0 he

H NIV NVVflV>
50u



TM- 3628

E-

LCO

Z NIV NVNIV

51.



TM- 3628

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ D

c-

w

0

u-J

-37

0

CN -

dHdd NliIVM'IiS3 NOIIISOd SV~d
52



TM- 3628

-

CD

4

0

(.0.
0c

I-.

CN-

CJ
CD0

CN-

HOH3N~li~li3 )\IOO SA
53E



TM- 3628

CDu

E

E-

0

0

C)

CD C

54



TM- 3628

CD

00'

.1):-

CN-

CD4

a C:) 0 0 C
00 U)

H 3 iIOO3A 03~ilI
55-



TM- 3628

Y&.e

I.t

00

tot**.

C)~~ C) 0

LO (N.C,4

OH3 O~iV3 330 03a14IJ

56.~..4r



TM- 3628

fn

I-

Li >

C 4u

I-i

.........

uO C-'14

C C) 0 0

LA NIVO NVIN-VN
57



TM- 36 28

CD

CTI,

LUJ

CNN

C14 LO -

Z NIVONV~flV

58c



TM- 3628

CDU

CDJ

00

c2

E-

Ln.

CNN

-1~

.. ........................I....... ..
. ..D"

- v

D NIVO NV1V>
59



TM- 3628

-00'

4LJ

cc cc

600



TM- 3628

CD

(0

LC) )

- 4.
v- C

4.4

0

cc

-QQ

61



TM- 36 28

Q)

ccc

(00

LU n

4

CD4

0 0 0 0D
rM) C11

0O6 3 NOliVWliSI NOIiV i3D03V SM'T
62



SPACE DATA CORPORATION
TEMPE, ARIZONATM32

APPENDIX A

ALGORITHM SIMULATION COMPUTER PROGRAM
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SPACE DATA CORPORATION
TEWE. ARIZONA TM-3628

The FORTRAN listing of the computer simulation program are enclosed in this

appendix. The program input and a sample output file are also given. The

various input quantities are:

T = Sampling period

ALPHA = a

SIA = 0a

SIM = av

TMAX = Value of time for program termination

SIAM = 0at

BETA = 8

XINL = Initial target position

VINL = Initial target velocity

AINRAND = Initial value of random target acceleration

AMEANI = Constant target acceleration outside the range T1 < t < T2

AMEAN2 = Constant target acceleration in the range T1 < t < T2

XSTART = xl-(0)

VSTART = x2-(0)

ASTART = x3-(0)

ISEED = Random number generator seed (odd integer)

INITIAL = 0 for filter initialization using first two measurements

= nonzero for alternative initialization

ISTATE = 2 for simulating two-state filter

= 3 for simulating three-state filter

GAMMA-- y

GMAX = max value of g(K) for maneuver detection
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SPACE DATA CORPORATION TM-3628
TEMPE. ARIZONA

QFACTOR = factor by which Q(k) matrix is increased upon detection of maneuver

AA = Value of av for 2 < t < 4

BB = Value of orv for 4 < t < 6

CC = Value of a v for 6 < t < 8

DD = Value of av for 8 < t
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-C K ALMAN FILTER SIMULATION PROGRAi
C

IMPLICIT REAL*8 (A-H O-Z)
REAL *4 YFL
DIMENSION XM(3),X(3),P(3,3),ZM(2)
DIMENSION PM(3, 3), PHI (3, 3), Q(3, 3)
DIMENSION S(3), SS(3), STM(3, 3), QQ(3, 3)

C
CHARACTER * 80 IBUFF
COMMON /CARDCOMMON /IBUFF, ICARDNUM, IOUTCHAN, INCHAN
INCHAN =2

IOUTCHAN = 3
ICARDNUM = 0
OPEN (2, FILE='K(AL. IN', STATUS='OLD')

C OPEN (3, FILE='KAL. OUT', STATUS='NEW')

CALL RDLINE
CALL GETDFP(1,T,0)
CALL GETDFP(2, ALPHA, 0)
CALL GETDFP(3,SIA,0)
CALL GETDFP(4,SIM,0)
CALL GETDFP(5, TMAX, 0)

C
CALL RDLINE
CALL GETDFP(1,SIAM,0)
CALL GETDFP(2, BETA. 0)
CALL GETDFP(3,XINL,0)
CALL GETDFP(4,VINL,0)
CALL GETDFP(5, AINRAND, 0)

C
CALL RDLINE
CALL GETDFP(I. AMEANI. 0)
CALL GETDFP(2,T1.O)
CALL GETDFP(3, T2, 0)
CALL GETDFP (4, AJ'EAN2, 0)

C
CALL RDLINE
CALL GETDFP (1,XSTART, 0)
CALL GETDFP(2, VSTART, 0)
CALL GETDFP(3, ASTART, 0)

C
CALL RDLINE
CALL GETINT(1, ISEED,0)
CALL GETINT(2. INITIAL, 0)
CALL GETINT(3, ISTATE. 0)

C
CALL RDLINE
CALL GETDFP(1, GAMMA. 0)
CALL GErTDFP (2, GMA X, 0)
CALL GETDFP(3. QFACTOR, 0)

C
CALL RDLINE
CALL GETDFP(1,AA,0)
CALL GETDFP(2,BB,0)
CALL GETDFP(3,CC,0)
CALL GETDFP(4,DO)

AT =ALPHA * T
ET =DEXP(-AT)
EET DEXP(-2,.* AT)
SASO SIA * SIA A-4
R = SIM * SIM

C
C INITIALIZE PM MATRIX (ERROR COVARIANCE MATRIX)



I t- k INI I ilL. tU. U ) HI rII

PM(l, 1) = R
* PM(1,2) = R / T

PM(1. 3) =0.

PP = SASQ/(ALPHA**4. *T*T)

PPP = 2. -AT*AT + 2. *AT**3. /3. -2* *ET -2. *AT*ET
PM(2,2) =2. * R /(T * T )+ PP * Ppp
IF(ISTATE. EQ. 2) PM(2.2) 2.* R /(T * T) + SASO *T/3.

* PM(2,3) = SASQ*(ET +AT -1. ) /(ALPHA*ALPHA* T)
PM(3,3) SASO
ELSE
DO 201 J =1,3
CALL RDLINE
CALL GETDFP(1,PM(J,1)0O)
CALL GETDFP(2,PM(J,2),0)

201 CALL GETDFP(3,PM(J,3).0)
END IF

C
PHI(1.1) I.
PHI(1,2) T
PHI(1,3) =(-1. +AT + ET) /(ALPHA *ALPHA

PHI(2,1) =0.
PHI(2,2) =1.
PHI(2.3) = (1. -ET) /ALPHA

* -PHI(3.1) =0.

PHI(3.2) =0.
w PHI(3.3) =ET

C
03 1 =1. - EET +2. *AT +2. *AT**3. /3. -2. *AT*AT -4. *AT*ET
QQ2 =EET + 1. - 2. *ET +2. *AT *ET -=".*AT + AT*AT

C
0(1,1) =001 * SASO / ALPHA**4.
Q(1,2) 0 02 * SASO / ALPHA**3.
0(1,3) = (1. - EET -2. *AT*ET) * SASG /ALPHA**2.
0(2, 1) =0(1,2)

0(2,2) =(4.*ET - 3. -EET +2.*AT)* SASG /ALPHA**'-.
G(2-,3) =(EET + 1. -2.*ET) * SASO /ALPHA
0(3,1) G (1,3)
Q(3,2) Q (2,3)
G(3,3) =(I. - EET) * SASO

C
IF(ISTATE. EQ. 2) THEN
0(1,1) = SASO * T*T*T /3.
0(1,2) = SASO * T*T /2.
0(2,1) = 0(1,2)
0(2,2) = SASO * T
END I F

C
C GENERATE FICTIOUS MEASURED POSITION DATA ASSUMING A STOCHASTI
C MODEL WITH ACCLN. CORRELATION BETA AND ACCLN VARIANCE SIAM**L
C GENERATE STM = STATE TRANSTTION MATRIX TO BE USED TO CREATE
C THE FICTIOUS TARGET NEASUREMENTr DATA
C

AT = BETA * T
ET = DEXP(-AT)
EET = DEXP(-2.ix. AT)
SASO = SIAN * SIAM

C

STM(1,2) = T
STM(13) =(-l. + AT +ET)/( ETA* BETA)
STM(2,1) = 0.
STM (2, 2) =1.
STM(2.3) =(1. - ET) / BETA
STM(3,1) = 0. A-5



C
QGM1 = 1. - EET +2. *AT +2. *AT**3. /3. -2. *AT*AT -4. *AT*ET
QQM2 =EET + I. - 2.*ET +2.i*AT *ET -2.*AT + AT*AT

C
GFICT = (.1. -EET) * SASQ

C
IX = ISEED
CALL GRAND(IX. IYYFL)
IX = lY
YFLERR = 2.* ( 'FL -0.5 )*DSQRT(3. *R

C
S(1) = 0.
S(2) =0.
S(3) = AINRAND
XOLD = XINL
VOLD = YINL

C
XNEW =XOLD + T*VOLD + 0. 5*T*T*AMEAN1
VNEW =VOLD + T*AMEANI
XTRUE = XNEW + S(1)
VTRUE = VNEW + S(2)
ATRUE = S(3) + AMEANI
ZM(1) = YFLERR + XTRUE

* CALL GRAND(IX. IY. 'FL)
IX = IY
YFL3 =2.* C YFL - 0.5 )*DSQRT(3. * FICT
CALL GRAND(IX.IY.YFL)
IX = IY
YFLERR =2. * ( YFL - 0.5 )*DSQRT(3. *R

SSC T(,)Sl T(,)S2 T(,)S3
66(2) =STN(2,1)*S(1) + STM(2,2)*S(2) + STM(2.3)*S(3)

63(3) =STM(3,l)*S(l) + STM(3,2)*S(2) + STM(3,3)*S(3) +YFL3

DO 33 I=1,3
33 S(I) = SS(I)
C

XOLD = XNEW
VOLD = VNEW
XNEW = XOLD + T*VOLD + 0. 5*T*T*AMEANI
VNEW = VOLD + T*AMEANI
XTRUE = XNEW + 6(1)
VTRUE = VNEW + S(2)
ATRUE = 6(3) + AMEANI
ZM(2) = YFLERR + XTRUE

C
C END OF FIRST TWO MEASUREMENTS AT TIME = 0 AND TIME =T

C
XM(1) = ZM(2)
XM(2) = ZM(2) - ZN(1) )/ T
XM(3) =ASTART

C
ALTERNATIVELY INITIALIZED FILTER (INITIAL .NE 0)~

IF ( INITIAL .NE. 0 ) THEN
* XM(t) =XSTART
* Xi'I(2) = VSTART

END I F
C

TIME = 2. *T
C A- 6
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* SUM3 = .
SUM4 =0.
SUM5 = 0.
GOLD = 0.

* -. Z = ZM(2)

IF(ISTATE. EQ. 2) THEN
WRITE(3, 301)

301 FORMAT(3X. 'TIME', 6X, 'MERR', 7X, 'PERR', 7X, 'VERR', SX, 'KI,
* 1 1OX, 'K2'o9X, 'ROOT PlI'.SX. 'ROOT P22')

ELSE
*~,1~ WRITE(3. 302)
* 302 FORMAT(3X, 'TIME', 6X, 'MERR ',7X, 'PERR', 7X, 'VERR', 7X, 'AERR',
* ~ ~~ i ox, 'Kls',IX,~'K2'. lOX, 'K43'.9X, 'ROOT P11',4X, 'ROOT P22',5X,

2 'ROOT P33')
END IF

C

6. C BEGIN KALMAN FILTER LOOP
C
10 CONTINUE

4 i'-~,g C

DEL = PM(l,1) + R
GKI = PM(1,1) / DEL
GK2 = PM(1,2) / DEL
GK3 = PM(1,3) / DEL

C
PINV = Z - XM(l)
X(l) = XM(1) + GKI * PINY

*X(2) = XM(2) 4- GK2 * PINV
*X(3) =XM(3) + GK3 * PINV

C
P(1,1) =(I. - GK1 ) * PM(1~l)
P(1,2) = (I. - GKI ) * PM(l.2)
P(1,3) =(I. - GK1 ) * PM(1,3)
P(2,2) =- G$K2 * PM(l,2) + PM(2,2)
P(2,3) = - GK2 * PM(1,3) + PM(2,3)

*P(3,3) =- GK3 * Pi%1W13) + PM(3,3)
C
C COMPUTE FADING MEMORY AVERAGE OF INNOVATION PROCESS
C

RHO PINY PINV PM(1,1) + R
GNEW =GAMMA *GOLD + RHO
GOLD =GNEW

C
C WRITE QUANTITIES OF INTEREST
C

PERR = -X(1) + XTRUE
VERR = -X(2) + VTRUJE
AERR =-X(3) + AT RUE
SUMI = SUMI + PERR * PERFR
SUM2 = SUM2 + YFL.ERR * YFLERR
SUM,3 = SUM3 +PERR
SUII4 = SUM4 +- YFLER
SUMS SUM'5 + VERRs--VEPR
SPE= DS(RT(PM(,l))
SPF =DSORT(P(l~l))
SVE = DSORT(Pi1(2, 2))
SVF = DSORT(P(2,2))
SAE = DSQRT(PN(3,3))
SAF =DSQRT(P(3.3))
ICOUNT =ICOUNT + I

C
IF( ISTATE. E0. 2 ) THEN A- 7
WRITE(3, 100)TIME,YFLERR,PERR.VERR,GKI,GK2,SPF,SVF

*100 FORMAT(F7.2,3F11.3,2X,4(EII.4,2X))



-101 FORMAT(F7.2,3Fll.3,2X.7(El1.4.2X))
END IF

C
C COMPUTE PM AND XM FOR THE NEXT TIME STEP
C

IF(GNEW. GT. GMAX) THEN
C
C ADAPTIVE FILTER ... BEGIN ADAPTATION
C

DO 44 I=1,3
* DO 44 J=1,3
44 GQ(I,J) = FACTOR *Q(IJ)

C
* IF( ISTATE. EQ. 2 ) THEN

PM(l.1) =P(1,1)+ 2.*T*P(1,2)+ T*T*P(2,2) + 00(1.1)
PM(1,2) =P(1,2)+ T*P(2,2) +00G(1.2)
PM(2,2) = P(2,2)+ 00(2,2)
ELSE
PM(1.1)= P(1,1)+ 2.*T*P(1,,2)+ 2.*PHI(1.3)*P(1,3)+ T*T*P(2,2)+

1 2.*T*PHI(1.3)*P(2,3)+ PHI(1,3)*PHI(1,3)*P(3,3)+ 00(1.1)
PM(1,2)= P(1,2)+ PHI(2,3)*P(1,3)+ T*P(2,2)+ (PHI(1,3)+

1 T*PHI(2,3))*P(2,3)+ PHI(1,3)*PHI(2,3)*P(3,3)+ 00(1,2)
PM(1, 3)= PIHI(3, 3)*(P(1,3)+ T*P(2, 3)+ PHI(1, 3)*P(3, 3))+a3Q(1. 3j
PM(2,2)= P(2,-")+ 2.*PHI(2,3)*P(2.3)+ PHI(2,3)*PHI(2,3)*P(3,3)

I + 00(2,2)
PM(2,3)= PHI(3,3)*(P(2,3)+ PHI(2,3)*P(3,3))+ OQ(2,3)
PM(3,3)= PHI(3,3)*PHI(3,3)*P(3,3)+ 00(3.3)
END IF
ELSE

C
IF( ISTATE. EQ. 2) THEN
P11(1.1) =P(1,1)+ 2.*T*P(1,2)+ T*T*P(2,2) +0G(1,1)
PM(1,2) =P(1,2)+ T*P(2,2) + 0(1,2)
Prl(2,2) =P(2,.2)+ 0(2,2)
ELSE
PM(l .1)= P (1, 1)+ 2. *T*P (1, 2)+ 2-*PHI (1, 3)*P (1, 3) + T*T*P (2, -) +

1 2.*T*PHI(1,3)*P(2,3)+ PHI(1,3)*PHI(1,3)*P(3,3)+ 0(1.1)
PM(1.2)= P(1,2)+ PHI(2,3)*P(1,3)+ T*P(2,2)+ (PHI(1.3.+

1 T*PHI(2, 3) )*P(2,3)4+ PHI(1, 3)*PHI(2, 3)*P(3, 3)+ G(1,2)
PM(1,3)= Pli-1(3,3)*(P(1,3)+ T*P(2,3)+ PHI(1,3)*P(3,3))+ G(1,3)
PM(2,2)= P(2,2)+ 2.*PHI(=2,3)*P(2,3)+ PHI(2,3)*PHI(2-,3)*P(3,3)

1 + 0(2,2)
PM(2,3)= PHI(3.3)*(P(2,3)+ PHI(2,3)*P(3,3))+ G(2,3)
PM(3,3)= PiIAI(3,3)*PHI(3,3)*P(3,3)+ G(3,3)
END IF
END IF

C
C END OF ADAPTION .......... . . . . . . . . .
C

IF( ISTATE. EQ. 2 ) THEN
XM(1) = X(1) + T*X(2)
XM(2-) = X(2)
ELSE

XiI(2) =X(2-) + PHI(2,3)i*X(3)
XM(3) =PHI(3,3)*X(3)

END IF
c

TIMIE = TIME + T
IF(,TIME. CT. 2.) R = AA*AA
IF(TIME. CT. 4.) R = BB*BB1
IF(TIME.GT 6.) R = CC*CC
IF(TIME. GT. 8. ) R =DD*DD A-8
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CALL GRAND(IXIY,YFL)
IX = IY
YFL3 = 2. * ( YFL - 0. 5 )*DSQRT(3. * FICT
CALL GRAND(IX.IY,YFL)

YFLERR 2.* YFLO05 *DSGRT(3. R)

SS(l) = STM(1,1)*S(l) + STM(1,'2)*S(2) + STM(1,3)*S(3)
* SS(2) = STM(2,1)*S(1) + STM(2,2)*S(2) + STM(2,3)*S(3
* SS(3) = STM(3,1)*S(1) + STM(3,2)*S(2) + STM(3,3)*S(3) +YFL3

C
DO 34 I=1.3

34 S(I) =SS(I)
C

IF(TIME. LT. T1. OR. TIME. CT. T2) THEN
Ir -AMEAN AMEAN1

~ .~- ~)* ~ELSE
AMEAN =AMEAN2

END IF
C

XOLD = XNEW
VOLD = VNEW
XNEW = XOLD +T*VOLD +0. 5*T*T*AMEAN
VNEw VOLD + T*AMEAN
XTRUE =XNEW + S(1)
VTRUE = VNEW + S(2)

* ATRUE =S(3) + AMEAN
Z =VFLERR + XTRUE

C
IF(TIME. CT. TMAX) GO TO 11
CO TO 10

C
11 SMEAS = DSGRT(SUM2/ICOUNT)

SFPOS = DSQRT(SUMI/ICOUNT)
SUM3 = SUM3 / ICOUNT
SUM4 =SUM4 / ICOUNT
SUM5 = DSORT(SUM5/ICOUNT)
WRITE(3, 103)SUM4, SMEAS

103 FORMAT(/, 'MEAN MEAS ERR =',FIO,4, ' RMS MEAS ERR =',F10.4)
WRITE(3, 1O4)SUM3, SFPOS

104 FORMAT(/. 'MEAN PESTM ERR =',FIO.4, ' RMS PESTM ERR =',F10.4)
WRITE(3, 105)SUM5

105 FORMAT(/, 'RMS VESTM ERR =',F1O.4)
STOP
END

C
C RANDOM NUMBlER CENERATOR SUBROUTINE
C

SUBROUTINE CRAND(IX. IYYFL)
IY = IX * 65539

5 IY =IY + 21474836~47 + 1
6 YFL IY

YFL YFL 0 4656613E-?
RETURN
END
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c SAM1PLE INPUT FILE FOR KALMAN FILTER PROGRAM

0.01 0.01X 34 6~4 5. 1 T, ALPHA, SIA, SIM, TMAX

5. 1 0, 50. 2SIAM, BETA.XINL, VINL, AINRAND

40 12 6 40 AMEANIl,T~2,AMEAN2

3 0. -7 TARTVSTARTASTART

119C3 1 .3 ISEFD, INITIAL, ISTATE

34 1. GAIMA,GMAXOFACTOR

2' 2 4. AA, 9B, CC,DD

2. 1=0 0. Pr-(1, I),PM(21.2), PM(2LJ)

o 0 1200 PM(3,1),PM(3,2),PM(3,3)
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